Czy Antarktyda zaprzecza globalnemu ociepleniu?

Często słyszymy, że naukowcy lubią dobierać sobie te tematy, które im pasują. Piszą więc o Arktyce, gdzie temperatury są coraz większe, a lodu morskiego jest coraz mniej. Natomiast przemilczają Antarktydę, gdzie jest dokładnie na odwrót. Ale czy naprawdę? Przyjrzyjmy się zatem temu co dzieje się na Antarktydzie.

Pretekstem niech będzie nowy artykuł naukowy (znów z nielubianego przeze mnie PNAS): Liu i Curry 2010 [1]. O artykule tym napisała nawet Gazeta Wyborcza, chociaż autor notatki o nim chyba niezbyt uważnie go czytał (a może nie znał jego tła). Ale o tym niżej. O Antarktydzie rzeczywiście do niedawna sądzono, że większość jej się oziębia. Uważano też że przybywa na niej masy lądolodu (tak pisał jeszcze w 1972 Jacobs w czasopiśmie Science). Ponieważ obszary polarne powinny się ogrzewać szybciej niż przeciętnie cała Ziemia, wyglądało to na problem dla klimatologii. Słowem kluczowym jest tu jednak “do niedawna” bo nasza wiedza o tych problemach ostatnio znacznie się zwiększyła. W dodatku to “niedawno” to już dobrych parę lat. Przede wszystkim są części Antarktydy, które ogrzewają się i to szybciej niż przeciętna dla naszej planety (dokładnie tak jak przewiduje teoria). Jest to przede wszystkim “najbardziej wystająca” część Antarktydy, czyli Półwysep Antarktyczny. Powyższy rysunek z artykułu Vaughan i inni 2001 (też z Science) przedstawia wartości trendów zmian temperatury na dekadę czyli 10 lat (wraz z niepewnościami i poziomem istotności [2] trendu) dla stacji pomiarowych na Półwyspie Antarktycznym (podana jest także ilość lat  pomiarów). Widać, że mimo dużych błędów statystycznych, mierzony wzrost temperatury powietrza jest znacznie szybszy niż średnia dla całej Ziemi (czyli w ostatnich dekadach ok. 1,5 C/stulecie). Ten szybki wzrost temperatury jest przyczyną głośnego w mediach (a nawet filmach fabularnych)  rozpadu barier lodowych wokół Półwyspu, a zarazem jest on spodziewanym skutek znanej od dziesięcioleci “polarnej akceleracji” ocieplenia, czyli dodatnich sprzężeń zwrotnych (patrz wpis “Czy rozumiemy ocieplanie się Arktyki?“).

Czy jednak podobnie ociepla się reszta Antarktydy. Otóż nie. Do niedawna sądzono nawet, że wnętrze kontynentu się oziębia. Dopiero od około 5 lat (a nie od roku jak napisano we wspomnianej notatce z Wyborczej) wiemy, że wnętrze to się także ociepla, jednak znacznie wolniej niż większość planety.

W artykule Turnera i innych z marca 2006 roku (też Science) porównano dane z sondowań atmosfery balonami meteorologicznymi na stacjach polarnych.  Wskazywały one (jak widać powyżej), że praktycznie na wszystkich stacjach, z których mamy dane zanotowano ocieplenie w okresie od 1971 ro 2003 r. Słupki oznaczają wartość średnioroczna i dla czterech pór roku zaczynając od jesieni (czyli okresu marzec-maj bo to półkula południowa). Kolory słupków oznaczają poziom istotności (Turner stosuje odwrotną terminologię niż Vaughan, tzn 1% u niego to szansa 99% że trend jest istotnie niezerowy).

Dolna część wykresu to wyliczony średni profil zmiany temperatury (stopnie na 10 lat) w funkcji wysokości nad  powierzchnia morza – wyrażoną jak przystało na meteorologów wartością ciśnienia powietrza (średnio ok. 1013 hPa to powierzchnia morza a wartość zero to szczyt atmosfery). Wykres ten wskazuje na ocieplanie się nie tylko w pobliżu powierzchni lodu ale w całej troposferze.

Jedynie w stratosferze, która nawiasem mówiąc w obszarach polarnych zaczyna się niżej niż w naszych szerokościach,  zanotowano ocieplenie. I w dodatku dokładnie wiemy dlaczego. To też nasza robota ale w tym wypadku nie chodzi o gazy cieplarniane. W stratosferze silnym czynnikiem grzejącym jest absorpcja ultrafioletu przez molekuły ozonu. A ponieważ pod koniec okresu, z którego posiadamy dane koncentracja ozonu zaczęła ponownie rosnąć po zakazaniu używania freonów, stratosfera też zaczęła się ogrzewać (i to jedynie w rejonach polarnych ale tam zmiany koncentracji ozonu są największe – słynna Dziura Ozonowa; gdzie indziej dominuje oziębianie stratosfery – efekt uboczny efektu cieplarnianego, o którym tu jeszcze napiszę).

Wspomniany w notatce z Wyborczej artykuł Steiga i innych z 2009 r. (tym razem Nature) zastosował model klimatyczny aby uzupełnić dziury w pomiarach (mamy dane jedynie z kilku stacji pomiarowych na kontynencie większym niż Europa). Wynika z niego, że Zachodnia Antarktyda (czyli ta od strony Półwyspu Antarktycznego) ogrzewa się szybciej niż wynika z pracy Turner i inni a Wschodnia nieco wolniej (a jesienią nawet minimalnie się ochładza). Oczywiście tu i zawsze należy pamiętać, że reanaliza modelem klimatyczny to jednak nie to samo co wartości pochodzące bezpośrednio z obserwacji. Jest to jednak najlepsze czym dysponujemy tam gdzie są luki w danych pomiarowych.

Jak jest zatem z przyrostem lub ubytkiem masy lądolodu Antarktydy i z lodem morskim? Z lądolodem nie najlepiej. Pomimo, że w części Antarktydy Wschodniej większe opady śniegu (o czym więcej niżej) i niezmienna temperatura powodują łącznie przyrost masy lodu, na kontynencie jako całości jest coraz gorzej. Wiemy to z kilku niezależnych metod pomiarowych (pisałem o nich we wpisie o Grenlandii), że lodu na Antarktydzie coraz szybciej ubywa.

Powyższy rysunek pochodzi z Diagnozy Kopenhaskiej 2009 (raportu podsumowującego postęp w badaniach od ostatniego raportu IPCC) i przedstawia wartości szacowanych prędkości zmian masy lądolodu Antarktydy w funkcji czasu. Widać, że nie dość, że ubywa (w tempie zwiększającym światowy poziom morz o ponad pół milimetra rocznie), ale ubywa coraz szybciej.

A lód morski? Lodu morskiego (w sensie powierzchni bo o jego grubości niewiele wiemy) nieco przybywa. Problem w tym, że w przeciwieństwie do Arktyki, na południowej półkuli nie ma praktycznie wieloletniego lodu morskiego (nie mylić z przyczepionymi do lądu barierami lodowymi!).  Wiatry rozpraszają go na wielkich obszarach trzech oceanów i w ciągu roku topnieje on prawie w 100%.  Tak wiec jego powierzchnia jest raczej wskaźnikiem siły wiatrów (jak mocno go rozproszą zanim stopnieje) niż temperatury.

A wiatry zachodnie wokół Antarktydy są od kilkudziesięciu lat średnio coraz silniejsze. Te wiatry to dobrze znane żeglarzom ryczące czterdziestki oraz wyjące pięćdziesiątki. Miarą ich jest wskaźnik meteorologiczny SAM (Southern Annular Mode) czy jak niektórzy wolą AAO (Antarctic Oscillation) (odpowiednik AO czyli  Arctic Oscillation na półkuli północnej).  Wzrost siły cyrkulacji zachodniej wokół Antarktydy wiązany jest najczęściej, chociaż nie jest to pewne, z malejącą koncentracja ozonu w stratosferze. Jeśli to prawda, to można spodziewać się w najbliższych dekadach odwrócenia się tego trendu i słabszych wiatrów.

Dlaczego jest to istotne? Ponieważ coraz większa izolacja termiczna mas powietrza nad Antarktydą przez tę coraz silniejszą cyrkulację zachodnią uważana jest za przyczynę ochładzania się (a przynajmniej wolniejszego ocieplania się) tego kontynentu. I wbrew wspomnianej notce z Wyborczej nie jest to nowa idea. Pisali o tym Thompson i Solomon już w 2002 roku (znów w Science).

Na czym polega zatem nowość wspomnianego artykułu Liu i Curry 2010? Otóż potwierdza on przy pomocy wyników modelowania i metod statystycznych, że AAO jest dominującym czynnikiem determinującym rozkład temperatur w rejonie Antarktydy. Poniżej przedstawiony pierwsza empiryczna funkcja ortogonalna (EOF) związana właśnie z tym indeksem wyliczona z danych historycznych temperatur wody morskiej: po lewej z HadISST, po prawej z  ERSST.  Mówiąc bardziej  popularnie, wykresy pokazują jak zmieniają się temperatury przy wzroście indeksu AAO: rosną w pewnej odległości wokół Antarktydy ale maleją tuż przy niej. Ale o jednostkę używaną na wykresie pytajcie autorów artykułu (stopień? odchylenie standardowe? jednostki umowne?). Natomiast wartości 28% i 29% oznaczają część całkowitej zmienności temperatur jaką da się wyjaśnić przy pomocy tej pierwszej funkcji ortogonalnej (czyli de facto przy pomocy indeksu AAO).

Artykuł pokazuje dalej, że wokół Antarktydy wraz z wzrostem indeksu AAO zwiększają się opady (dokładniej opady odjąć parowanie czyli z angielska  P-E). Taki efekt widziany jest miedzy innymi w danych z pływaków Argo (o których pisałem we wpisie o ogrzewaniu się oceanów). Lżejsza słodsza woda na powierzchni oceanu utrudnia jego pionowe mieszanie izolując termiczne lód morski od cieplejszej wody poniżej. Może to również być jedną z przyczyn dlaczego dotychczas nie ubywa lodu morskiego wokół Antarktydy. Inną może być to, że większość tego dodatkowego opadu to śnieg o wysokim albedo, sprawiający, że lód morski mniej nagrzewa się od promieniowania słonecznego.  Przypominam, że wszystkie trzy wspomniane tu i wyżej czynniki “ratujące” lód morski związane są z wysokimi wartościami indeksu AAO.

Dlatego istotny jest fakt, że wartości tego indeksu mogą spaść w wyniku przybywaniu koncentracji ozonu w stratosferze nad Antarktydą, w miarę zanikania spowodowanej przez nas Dziury Ozonowej. Jej odbudowa przewidywana jest na drugą połowę obecnego stulecia. Przejście AAO do wartości ujemnych spowoduje zatem silniejsze ocieplenie Antarktydy. Co gorsza autorzy artykułu twierdzą, że ich wyniki modelowania klimatu Antarktydy w XXI wieku pokazują, że efekt cieplarniany przewyższy działanie AAO. Poniżej pokazane są wymodelowane (model CCSM3, po lewej z wymuszeniami XX-wiecznymi, po prawej wymuszenia ze scenariusza A1B zmian wymuszeń w XXI wieku) zmiany temperatury – tym razem na pewno w stopniach Celsjusza –  pomiędzy latami 1990-mi a 1950-mi (po lewej) i 2090-mi a 2000-mi (po prawej).

To znaczy jeszcze w tym wieku Antarktyda będzie cieplejsza niezależnie od wartości AAO dzięki działaniu gazów cieplarnianych. Ocean pod spodem może być nawet do 1,5 °C cieplejszy niż obecnie. Opady  śniegu zaczną zamieniać się w opady deszczu nad oceanem wokół Antarktydy. Uważny czytelnik notatki w Wyborczej zauważy, że ten wniosek z artykułu stanowi jej najważniejszy (i względnie najlepiej przedstawiony) punkt.

Czy to jakaś sensacja? Raczej potwierdzenie tego co już podejrzewaliśmy. Ale sprawdzać takie rzeczy zawsze trzeba. Raporty IPCC nie biorą się z wyobraźni ich autorów,  a z przeczytania setek artykułów takich jak Liu i Curry 2010.

[1] Liu J, & Curry JA (2010). Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice. Proceedings of the National Academy of Sciences of the United States of America, 107 (34), 14987-92 PMID: 20713736

[2] Przypominam, że poziom istotności jest prawdopodobieństwem, że trend jest “istotnie” (tzn. nie tylko w wyniku błędu statystycznego) różny od zera (dopisek: i oczywiście nie ma przeciwnego znaku). Jak zobaczymy dalej niektórzy stosują tu wartość dopełniającą się do 100% (np. 5% zamiast 95%).

Dopisek z 31.08.2010: Zwrócono mi uwagę, że powyższa definicja poziomu istotności nie jest dokładna, ale nie bardzo widzę jak ją napisać lepiej aby zachować charakter popularnonaukowy. Jeśli ktoś chce wiedzieć więcej na ten temat, radzę przeczytać poniżej komentarze użytkownika ztrewq i/albo następujące hasło angielskojęzycznej Wikipedii: http://en.wikipedia.org/wiki/P-value.

Dopisek z 2.09.2010: Ponieważ podręcznik Hans von Storch and Francis W. Zwiers “Statistical analysis in climatic research” podaje definicję praktycznie identyczna z moją, dodaję powyżej jedynie drobne wyjaśnienie w nawiasie (od początku chodziło mi o prawdopodobieństwo, że zmienna na wartość po swojej stronie wartości zero ale nie wiedziałem jak to krótko wyrazić).

Dopisek 5.09.2010: Po dogłębnym przejrzeniu literatury widzę że moja definicja istotności (significance) jest poprawna. Nie jest ona jednak oparta na koncepcji wartości-p (p-value) i testowaniu hipotezy zerowej (null hypothesis), a po prostu na zakresach ufności (confidence intervals). Identycznie jak ja definiują ją von Storch i Zwiers w swoim podręczniku dla klimatologów. Wcześniej jako (lepszą) alternatywę dla p-wartości i hipotez zerowych proponował ją Gill w 1999 roku w artykule “The insignificance of null hypothesis significance testing”, a idea pochodzi chyba z Gardner i Altman 1986 “Confidence intervals rather thanp-values: estimation rather than confidence testing” (to znaczy nic wcześniejszego nie znalazłem).

Autorzy ci (i wielu innych – patrz komentarze poniżej) uważają wartości-p za bardzo ułomny test czegokolwiek. Zakresy ufności w przeciwieństwie do wartości-p dają jakąś sensowna informację (prawdopodobieństwo że uzyskaliśmy daną wartość zamiast innej, na przykład zera nie jedynie w wyniku ślepego losu). W ogólnym przypadku wartość-p nie daje rzeczywiście tej wiedzy. Ale żeby było śmieszniej w prostym przypadku tu omawianym (prawdopodobieństwo że trend różni się od zera) oba podejścia są tożsame czyli ztrewq i doskonaleszare nie mieli racji podwójnie czepiając się mojej powyższej definicji nie dość, ze moja jest w ogólności lepsza to akurat w tym przypadku dają one te same wartości istotności). A jeśli co do tej równoważności nie wierzycie mi to posłuchajcie Gilla z w/w artykułu:

“In one sense confidence intervals and null hypothesis significance tests present the same information: a linear regression coefficient with a 1-α confidence interval bounded away from zero is functionally identical to a null hypothesis significance test rejecting as p≤α the hypothesis that the coefficient equals zero.”

Określenie “functionally identical” oznacza ni mniej ni więcej, że to w obu podejściach otrzymamy samą wartość istotności. A przecież to coś,  co ma dla regresji liniowej wartość identyczna z wartością-p to dokładnie moja definicja istotności z przypisu [2]!

101 thoughts on “Czy Antarktyda zaprzecza globalnemu ociepleniu?”

Leave a Reply

Your email address will not be published. Required fields are marked *